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Introduction
Colorectal cancer (CRC) is the second leading cause of cancer-
related mortality in developed countries[1–3].  Over the past 
several years, therapeutic options for patients with CRC have 
increased substantially, including earlier diagnosis, improved 
radical surgery, neoadjuvant chemotherapy, and anti-angio-
genesis agents[4].  Although mortality can be prevented by 
surgical resection before tumor cell dissemination[2, 3, 5], 61% of 
patients have metastatic disease at presentation and of these, 
90% die within 5 years of diagnosis.  Moreover, current adju-
vant chemotherapy for metastatic CRC increases median sur-
vival by only approximately 14 months[6].  These observations 
highlight the need for rationally designed, targeted thera-
peutic interventions to manage the metastatic process in CRC 
patients.  

Increasing evidence shows that traditional Chinese medi-
cines can be potential drugs and lead compounds for cancer 
treatment.  Ginsenoside Rg3 inhibits angiogenesis of Lewis 

lung carcinoma[7, 8], metastasis of intestinal adenocarcinomas 
and B16 melenoma[9, 10], and proliferation of prostate cancer 
cells[11, 12].  Recent reports showed that tanshinone II-A, an 
alcohol extract of the root of Salvia miltiorrhiza Bunge, could 
reverse malignant phenotypes and inhibit the growth of CRC 
and hepatocarcinoma cells[13–15].  Tanshinone II-A is a tradi-
tional Chinese medicine that is known to have anti-inflam-
matory activity[16, 17].  It induces differentiation of a human 
cervical carcinoma cell line (ME180) and leukemia cell lines 
(NB4, HL-60, and K562)[15, 16, 18–20].  However, no data have been 
published on whether tanshinone II-A can inhibit invasion 
and metastasis in colon carcinoma cells.  Here, we investigate 
the effects of tanshinone II-A on the human colon carcinoma 
cell lines HT29 and SW480 using in vitro and in vivo assays for 
invasion and metastasis.  We investigate possible molecular 
mechanisms for the effects of tanshinone II-A by examining 
levels of proteins involved in migration and metastasis, spe-
cifically urokinase plasminogen activator (uPA), the matrix 
metalloproteinase (MMP)-2 and MMP-9 and a tissue inhibitor 
of matrix metalloproteinase protein (TIMP)-1.  To identifiy 
potential signalling pathways, we also investigate the activa-
tion of the nuclear factor-kappaB (NF-κB) pathway after tan-
shinone II-A treatment.
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Materials and methods 
Cell culture and materials 
The human colon carcinoma cell lines HT29 and SW480 were 
obtained from the American Type Culture Collection.  HT29 
cells were cultured in 1640 medium (Sigma-Aldrich), while 
SW480 cells were cultured in L-15 medium (Sigma-Aldrich).  
Media were supplemented with 10% fetal bovine serum 
(Atlanta Biologicals), and cells were cultured at 37 °C in 5% 
CO2.

Drugs and treatment 
Tanshinone II-A (Pharmasi Chemicals Co, Ltd) was obtained 
from Institute of Traditional Chinese Medicine, Jiangsu Nan-
jing Zelang Pharmaceutical Co, China at a purity of 98%.  It 
was dissolved in DMSO to a final concentration of 0.2 mg/L.  
The solution was filtered through a 0.22 μm micropore fil-
ter and stored at 4 °C, then diluted further in cell culture 
medium[19].  HT29 and SW480 cells were seeded in flasks or 
dishes.  The tanshinone II-A group was treated with different 
doses ( 0.5, 1.0, 1.5, 2, 2.5 mg/L), for 24, 48, 72, and 96 h.  The 
negative control group was treated with an equal concentra-
tion of DMSO.  The cells were measured over 96 h of treat-
ment.

Wound-healing assay 
For monolayer wound-healing assays, a total of 2×105 
cells were collected and plated in a 12-well plate.  At 100% 
confluence, two parallel wounds of 1 mm were made using 
a pipette tip.  Wound size after 24 h was measured using 
Zeiss LSM Image Browser software, version 3.1, in three 
independent experiments.

In vitro invasion assay 
Cell invasion assays were performed as described previ-
ously[21] using Transwells (8 μm pore size, Corning Costar 
Corp).  A 50 µg aliquot of matrigel solution was placed on 
the lower surface of a polycarbonate filter and incubated at  
37 °C for 2 h to produce an artificial basement membrane.  
After rinsing with PBS, the filters were placed into wells, and 
600 µL of 1640 or L-15 medium containing 10% bovine serum 
was added to the lower compartment.  HT29 or SW480 cells, 
either with or without tanshinone II-A at different doses, were 
added to the upper compartment of the chamber (100 μL 
serum-free 1640 or L-15 containing 5×104 cells), and 600 μL of 
conditioned medium was added to the lower chamber.  After 
24, 48, 72 and 96 h incubations, cells were removed from the 
upper surface of the filter with a cotton swab; the cells that 
had invaded the bottom surface of the filter were fixed with 
methanol and stained with hematoxylin.  The invasive ability 
was determined as the number of penetrating cells seen under 
a microscope at 200×magnification in 10 random fields per 
well.  Each experiment was performed in triplicate.  

In vitro migration assay 
The in vitro migration assay was performed as previously 
described[21] using Transwells (8 μm pore size, Corning Costar 

Corp) without matrigel, and was similar to the invasion assay.  
HT29 or SW480 cells were suspended at 2×104/mL.  The 
incubation time was 24 h.  Each experiment was performed in 
triplicate.

Tail vein metastatic assay 
The tail vein metastatic assay was analyzed as previously 
described[21].  Nude mice were handled using best humane 
practices and were cared for in accordance with NIH Animal 
Care and Use Committee guidelines.  Cells were harvested 
from tissue culture flasks using trypsin and washed three 
times with PBS.  Mice were injected with 1×106 cells in 0.1 
mL PBS through the tail vein.  The mice were monitored for 
overall health and total body weight.  Injected mice were 
randomly assigned into a control group C0 (0 mg·kg-1·d-1), or 
intervention groups C1 (5 mg·kg-1·d-1), C2 (20 mg·kg-1·d-1) or 
C3 (80 mg·kg-1·d-1).  Each experimental group contained 10 
mice.  Daily intragastric adminstration of tanshinone II-A was 
given for five consecutive weeks, beginning 24 h after tail vein 
injection.  Five weeks later, mice were sacrificed.  Liver tissues 
were observed with visually, and the number of visible tumors 
on the liver surface was counted.  Serial sections were made of 
the liver tissue before it was hemoxylin and eosin (HE) dyed 
and observed under a light microscope.  

Preparation of nuclear extracts.  
After treatment, cells were harvested and washed twice 
with ice-cold PBS, and resuspended in 1 mL of PBS. Nuclear 
extracts were prepared on ice as previously described [22].  After 
centrifugation at 13 000 r/min, the cell pellet was suspended 
in ice-cold buffer (10 mmol/L HEPES, 1.5 mmol/L MgCl2, 0.2 
mmol/L KCl, 0.2 mmol/L phenylmethylsulphonylfluoride, 
0.5 mmol/L dithothreitol), vortexed for 10 s and centrifuged 
at 13 000 r/min for 5 min.  The nuclear pellet was washed in 
1 mL buffer (20 mmol/L HEPES, 25% glycerol, 0.42 mol/L 
NaCl, 1.5 mmol/L MgCl2, 0.2 mmol/L EDTA), resuspended 
in 30 mL buffer, rotated for 30 min at 4 °C, and centrifuged for 
20 min.  The supernatants were used as nuclear extracts and 
analyzed for protein content by Bradford assay.

Western blot analysis 
Protein extraction and immunoblot analysis was performed as 
described[23].  Cells were washed twice with Hanks’ balanced 
salt solution and lysed directly in RIPA buffer [50 mmol/L 
Tris–HCl pH 7.4, 1% (v/v) Triton X-100, 1 mmol/L EDTA, 1 
mmol/L leupeptin, 1 mmol/L phenylmethylsulfonyl fluoride, 
10 mmol/L NaF, 1 mmol/L Na3VO4].  Lysates were centri-
fuged at 14 000 r/min for 30 min at 4 °C and supernatants col-
lected.  To detect expression of secreted, active MMPs, 10 mL 
of conditioned medium was concentrated 100-fold in 10 kDa 
microcentrifuge concentrators (Millipore).  Cell lysate (60 μg) 
or supernatant proteins (10 μg) were separated by SDS-PAGE, 
blotted onto nitrocellulose membrane, and incubated with 
mouse monoclonal primary antibody, either anti-uPA (diluted 
1:500; Sigma Chemical Co), anti-MMP-2 and anti-MMP-9 
(diluted 1:300; Santa Cruz Biotechnology, Santa Cruz, CA), 
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anti-TIMP-1 and anti-TIMP-2 (diluted 1: 300; Santa Cruz Bio-
technology, Santa Cruz, CA), anti-NF-κB p65 (diluted 1:1000; 
Santa Cruz Biotechnology, USA), or anti-β-actin (diluted  
1:5000; Sigma Chemical Co) overnight at 4 °C.  After repeated 
washing, membranes were incubated with horseradish-perox-
idase-conjugated anti-mouse secondary antibody (Santa Cruz 
Biotechnology) diluted 1:2000.  Bands were visualized using 
the enhanced chemiluminescence (ECL) system (Amersham 
Pharmacia Biotech).  Each experiment was performed in tripli-
cate.

Statistical analysis 
Stastical analysis was performed with the Kruskal-Wallis rank 
test, and the Mann-Whitney U test was used to calculate the P 
value and compare differences in immunohistochemistry data.  
Assays for characterizing cell phenotypes were analyzed by 
Student’s t-test.  Statistical SPSS software package (SPSS Inc, 
Chicago) was used to analyze data.  Differences were consid-
ered statistically different at P<0.05.

 
Results
Tanshinone II-A inhibits in vitro invasion and metastasis of CRC 
cells 
We investigated the effects of tanshinone II-A on the invasive 
and metastatic properties of CRC cells by in vitro invasion 
and migration assay.  Tanshinone II-A inhibited invasion 
and migration of HT29 and SW480 cells in a dose- and time-
dependent manner (Tables 1 and 2).  At 1 mg/L, an inhibitory 
effect was noticeable, while at 2 mg/L, the inhibitory rate was 
60.25%, with an average inhibition rate of 55.75% compared to 
the control group at 48 h.  Tanshinone II-A significantly inhib-
ited migration of HT29 and SW480 cells in a Boyden chamber 
assay without matrigel, with an average inhibition rate of 

53.15% compared to the control group at 24 h.  As shown in 
Figure 1 similar results were observed in a wound healing 
assay.  The inhibitory effect increased with time, as seen at the 
24, 48, 72, and 96 h timepoints.  The most significant effect was 
seen at 48 h (Table 2).  Thus, in vitro invasion and migration 
assays suggested that tanshinone II-A had the ability to inhibit 
colon carcinoma metastasis.

Tanshinone II-A inhibits in vivo metastasis of CRC cells 
The CRC cell line SW480 has invasive abilities, including the 
ability to metastasize to many organs, including liver and lung 
in nude mice.  We examined the effects of tanshinone II-A 
on in vivo metastasis of SW480 cells using a tail vein assay in 
nude mice.  Tanshinone II-A obvioulsy inhibited metastasis 
to the liver after tail vein injection of SW480 cells (Table 3).  
The tumor inhibition rates, measured by the appearance of 
visible tumors on the liver, in the C2 (20 mg·kg-1·d-1) and C3 
(80 mg·kg-1·d-1) groups were 40.37% and 61.15%, respectively 
(Figure 2, both P<0.05).  It suggested that tanshinone II-A 

Table 1A.  Number of invasive HT-29 cell after treatment with tanshinone 
II-A. 

                                                      Tanshinone II-A (mg/L)
Time (h)          0     0.5       1      1.5         2       2.5                                                             
 

24 31±8 28±5 24±6 18±5 12±3 10±4
48 35±6 32±6 28±5 22±6 17±5 13±3  
72 47±8 44±7 38±9 31±5 26±5 19±4
96 53±5 49±9 42±7 36±6 30±7 23±5

Table 1B.  Number of invasive SW480 cell after treatment with tanshinone 
II-A.

                                     Tanshinone II-A (mg/L)
Time (h)         0              0.5                1               1.5              2              2.5

 24         28±5        27±5       23±5       18±6       14±7       10±3
 48         39±8        36±4       30±3       25±7       20±5       16±3  
 72         54±7        52±8       45±6       37±5       28±5       22±7
 96         63±9        60±11 52±9       43±8       32±6       24±5

Figure 1.  Migratory ability of SW480 cells.  Cell migration was evaluated 
by wound healing assay after 24 h incubation with 0, 0.5, 1.0, or 2 mg/L 
tanshinone II-A.

Table 2A.  Number of migratory HT29 cell after treatment with tanshinone 
II-A.

                                    Tanshinone II-A (mg/L)
Time (h)         0               0.5              1               1.5               2              2.5

 24     48±7   43±8         38±9        31±7        23±6       18±4
 48       66±5     62±8         56±5       45±10      33±8       25±7  
 72        81±10     77±11       70±8       66±8        47±11     31±5
 96        95±15    90±16      84±12     73±12      55±8       38±8

Table 2B. Number of migratory SW480 cell af ter treatment with 
tanshinone II-A.
 
                                                     Tanshinone II-A (mg/L)
 Time (h)          0               0.25           0.5               1             1.5             2

 24     58±4        52±6         43±6      37±5       32±3  25±7
 48      74±8    68±10   58±7 49±9  41±8   31±9  
 72        89±10   83±11    76±9      65±8  53±12 39±10
 96         105±16    97±18   88±12    72±7    64±9    55±8
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could inhibit colon carcinoma metastasis.

Tanshinone II-A regulates the expression of uPA, MMP-2, MMP-9, 
TIMP-1 and TIMP-2 proteins in CRC cells
Extracellular matrix (ECM) degradation is an essential step 
in tumor invasion and metastasis, and is mainly mediated by 
a balance between MMPs such as MMP-2 and MMP-9[24, 25], 
TIMPs, such as TIMP-1 and TIMP-2[26, 27], as well as the ser-
ine protease uPA[28].  Therefore, we examined uPA, MMP-2, 
MMP-9, TIMP-1, and TIMP-2 proteins after tanshinone II-A 
treatment of CRC cells.  Western blotting showed that expo-
sure of SW480 cells to tanshinone II-A resulted in the down-
regulation of levels of uPA, and the inactive, cytoplasmic pro-
MMP-2 and pro-MMP-9 proteins, as well as their secreted, 
active forms.  TIMP-1 and TIMP-2 levels increased.  These 
effects were time- and dose-dependent (Figure 3).  Levels of 
the β-actin loading control were similar for all samples.  

Involvement of NF-κB in the tanshinone II-A effects on CRC cells
Previous studies showed that MMPs and TIMPs proteins 
are regulated via the activation of the NF-κB transcription 
factor[29].  The p65 protein is a major, phosphorylated subunit 
of NF-κB, so we investigated levels of phosphorylated p65 in 
the nucleus of CRC cells after treatment with tanshinone II-A.  
As shown in Figure 3C, levels of p-p65 in the nuclear fractions 
of SW480, which we take as a measure of nuclear translocation 
of NF-κB, was obviously decreased in a dose-dependent man-
ner, by treatment with tanshinone II-A.  

Discussion
For most patients with CRC, liver metastases are the main 
cause of death[30, 31], and the vast majority of patients with dis-
tant metastases die within 5 years of diagnosis.  Metastasis is 
mediated by discreet, sequential, rate-limiting steps, including 
invasion and migration; intravasation and systemic distribu-
tion of cancer cells; and seeding, colonization, and prolifera-
tion in capillary beds in distant organs[32–34].  In this study, we 
provide evidence that tanshinone II-A can suppress invasion 
and metastasis of colon carcinoma cells in vitro and in vivo.  
Invasion and metastasis of solid tumors requires the action of 
tumor-associated proteases that promote the dissolution of the 
surrounding tumor matrix and the basement membrane[35].  
uPA, MMPs and their inhibitors TIMPs, all play an important 
role in this process in gastric cancer[36–39].  In CRC, MMPs medi-
ate fundamental processes underlying the discreet steps in 
metastasis, including the remodeling of the ECM that is central 
to invasion and liberation of cancer cells from surrounding tis-
sues[40], and the deployment of locomotory organelles required 
for matrix adhesion, migration, invasion, and diapedesis[41].  

We found that tanshinone II-A was associated with reduced 
levels of uPA, MMP-2, and MMP-9, and increased levels of 
TIMP-1 and TIMP-2.  In metastasis, uPA and MMP-9 degrade 
the ECM and basement membrane, mobilizing growth fac-
tors that may promote survival, cell migration and invasion.  
Moreover, uPA directly activates MMP-9[42], which further 
contributes to ECM degradation during invasion and tumor 

Table 3.  Number of visible tumors in the liver surface of mice treated with 
different dosages of tanshinone II-A.

                          Dose                 Mice                  Number of           
Group          (mg·kg-1·d-1)      (before/after)     liver metastases      P-value

C0 0 10/10 18±5
C1 5 10/10 15±4 P>0.05
C2 20 10/10 10±4 P<0.05 
C3 80 10/10 5±3 P<0.01

Dose refers to mg·kg-1·d-1 of tanshinone IIA for five weeks and before/after 
means no treatment of five weeks after tanshinone II-A treatment at the 
indicated dose.  The liver tissues were observed visually, and the number 
of visible tumors on the liver surface were counted.

Figure 2.  Effects of tanshinone II-A on metastasis of SW480 cell in nude 
mice.  (A) An in vivo metastasis model was made by injection of SW480 
tumor tissue into the livers of nude mice.  Experimental and control 
groups had 10 mice each.  Groups were treated with tanshinone II-A at 
0, 5, 20, or 80 mg·kg-1·d-1.  Four weeks later, the mice were sacrificed and 
the number of visible tumors on the liver surface was counted.  bP<0.05, 
cP<0.01 vs the control group without tanshinone II-A.  (B) Serial sections 
of liver tissues were HE dyed and observed under a light microscope.
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progression.  On the basis of our in vitro evidence, we hypoth-
esize that tanshinone II-A inhibits invasion of CRC cells, at 
least in part by downregulating uPA, MMP-2, and MMP-9 
proteins, and upregulating TIMP-1 and TIMP-2.  

NF-κB exists in the cytoplasm bound to an inhibitory pro-
tein, IκB.  Previous work showed that NF-κB activation is 
associated with the expression of MMPs and migration of 
human aortic smooth muscle cells[43].  When NF-κB is activated 
by phosphorylation on the p65 subunit, IκB is degraded[44].  
In this study we evaluated the effect of tanshinone II-A on 

phosphorylation of the p65 subunit during NF-κB activation.  
We found that levels of phosphorylated p65 decreased, which 
might lead to a decrease in translocation of NF-κB.  This effect 
by tanshinone II-A was dose-dependent.  

In summary, we found that tanshinone II-A could signifi-
cantly inhibit in vitro invasion and metastasis of CRC cells.  
It also appeared to downregulate the protein expression of 
metalloproteinases MMP-2 and MMP-9.  Tanshinone affected 
these cell components, with the suggestion of possible direct 
or indirect effects on cell factors and pathways.  
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